Arize AI Phoenix
➺ PlatForm Features:
- Model monitoring
- Performance tracking
- Drift detection
- Root cause analysis
➺ Technical Components:
Monitoring Capabilities
Response quality
Latency tracking
Error detection
Resource usage
➺ Analysis Tools:
➺ Integration Features:
➺ Implementation Guide:
python
# Arize Phoenix setup from arize.phoenix import Client
client = Client()
# Log prediction
client.log_prediction(
model_id=”llm-v1″,
prediction=response,
features=input_data,
metrics={
“latency”: response_time,
“tokens”: token_count
}
)
➺ Key Benefits:
Each framework offers unique capabilities for LLM evaluation, and they can be used individually or in combination depending on your specific needs