MLFlow LLM Evaluate
➺ Framework Components:
➺ Implementation Details:
Core Features
Version control
Parameter tracking
Artifact storage
Results visualization
➺ Evaluation Pipeline:
➺ Integration Points:
➺ Best Practices:
python
# MLflow LLM evaluation example
import mlflow
with mlflow.start_run():
# Log parameters
mlflow.log_params({
“model_name”: “gpt-3.5”,
“temperature”: 0.7
})
# Log metrics
mlflow.log_metrics({
“accuracy”: accuracy_score,
“latency”: response_time
})